李浩源 教授/博导
邮箱:lihaoyuan@shu.edu.cn
上海大学微电子学院
个人介绍:
主要从事材料多尺度模拟工作,探索机器学习方法在材料研究中的应用,进行计算软件开发。在Journal of the American Chemical Society、Angewandte Chemie International Edition、Energy & Environmental Science、National Science Review、Chemical Science、Advanced Functional Materials、ACS Materials Letters等期刊上发表论文40余篇,研究成果被Advanced Science News等新闻媒体选为亮点工作报导。入选上海市海外高层次人才计划、上海市青年科技“启明星”计划、上海大学伟长学者、Journal of Materials Chemistry C 2022年度新锐科学家。担任Nature Communications、Journal of the American Chemical Society、Angewandte Chemie International Edition、Advanced Materials等期刊的审稿人。
ORCID:https://orcid.org/0000-0002-2469-5842
谷歌学术:https://scholar.google.com/citations?user=x_z7k4QAAAAJ
主要研究手段:分子模拟、机器学习
主要研究内容:纳米多孔材料的形成过程及其特性、固体中的离子和分子输运机制、有机微电子材料的微观机理
长期招收下列人员:
1. 对理论工作感兴趣或具有程序语言基础的硕士研究生
2. 具有计算模拟背景的博士研究生
3. 已取得较好理论成果的博士后
4. 科研助理
教育背景:
2015年博士毕业于清华大学
2010年本科毕业于吉林大学
工作经历:
2020年11月–至今 上海大学 特聘教授
2020年1月–2020年10月 亚利桑那大学 研究科学家
2019年6月–2020年1月 佐治亚理工学院 研究科学家
2017年2月–2019年5月 佐治亚理工学院 博士后
2015年8月–2016年12月 阿卜杜拉国王科技大学 博士后
开发的理论方法和模型:
描述二维共价有机框架材料在溶液中结晶的机器学习模型(https://doi.org/10.1002/anie.202408937)
模拟二维共价有机框架材料在溶液中结晶的动力学蒙特卡洛模型(https://doi.org/10.1021/jacs.7b09169)
模拟晶区-无定形区共混形貌的蒙特卡洛方法(https://doi.org/10.1016/j.orgel.2024.107006)
有机电子器件高效主方程模拟方法(https://doi.org/10.1002/adfm.201801460)
有机场效应晶体管动力学蒙特卡洛仿真模型(https://doi.org/10.1002/adfm.201605715)
有机半导体器件中载流子静电作用高效计算方法(https://doi.org/10.1021/acs.jpclett.7b01161)
高效求解混合边界条件下的三维泊松方程的方法(https://doi.org/10.1002/adts.202301259)
开发的仿真软件:
二维共价有机框架材料溶液结晶过程仿真软件
有机微电子材料工艺仿真软件
有机微电子和光电子器件分子水平仿真软件
毕业生去向:
2024年 耿钰博 华为
2024年 韩颖 华为
2024年 韩立鑫 华为
2024年 黄晋 中芯国际
2024年 王重阳 上海宇量昇
代表性论文:
(1)Wang, Z.; Du, H.; Xin, H.; Xue, J.; Zhang, J.; Li, H.* Microscopic Mechanisms of Reaction-Coupled Acid Diffusion in Chemically Amplified Photoresists. Chem. Mater. 2024, 10.1021/acs.chemmater.4c02731.
(2)Wang, Z.; Du, H.; Evans, A. M.*; Ni, X.; Bredas, J.-L.*; Li, H.* Growth of Two-Dimensional Covalent Organic Frameworks on Substrates: Insight from Microsecond Atomistic Simulations. Chem. Sci. 2024, 15 (42), 17629–17641.
(3)Tian, J.; Treaster, K. A.; Xiong, L.; Wang, Z.; Evans, A. M.*; Li, H.* Taming Two-Dimensional Polymerization by a Machine-Learning Discovered Crystallization Model. Angew. Chem. Int. Ed. 2024, 63 (39), e202408937.
(4)Du, K.; Xiong, L.; Fu, C.; Ni, X.*; Bredas, J.-L.*; Li, H.* Impact of Structural Defects on the Electronic Properties of Two-Dimensional Covalent Organic Frameworks. ACS Mater. Lett. 2024, 6 (2), 335–344.
(5)Pelkowski, C. E.; Natraj, A.; Malliakas, C. D.; Burke, D. W.; Bardot, M. I.; Wang, Z.; Li, H.*; Dichtel, W. R.* Tuning Crystallinity and Stacking of Two-Dimensional Covalent Organic Frameworks through Side-Chain Interactions. J. Am. Chem. Soc. 2023, 145 (40), 21798–21806.
(6)Zhang, H.; Geng, Y.; Huang, J.; Wang, Z.; Du, K.; Li, H.* Charge and Mass Transport Mechanisms in Two-Dimensional Covalent Organic Frameworks (2D COFs) for Electrochemical Energy Storage Devices. Energy Environ. Sci. 2023, 16 (3), 889–951.
(7)Zhang, H.; Li, H.* Lithium-Ion Distribution and Motion in Two-Dimensional Covalent Organic Frameworks: The Example of TAPB-PDA COF. J. Mater. Chem. C 2022, 10 (37), 13834–13843.
(8)Li, H.; Brédas, J.-L.* Impact of Structural Defects on the Elastic Properties of Two-Dimensional Covalent Organic Frameworks (2D COFs) under Tensile Stress. Chem. Mater. 2021, 33 (12), 4529–4540.
(9)Li, H.; Evans, A. M.; Dichtel, W. R.; Bredas, J.-L.* Quantitative Description of the Lateral Growth of Two-Dimensional Covalent Organic Frameworks Reveals Self-Templation Effects. ACS Mater. Lett. 2021, 3 (4), 398–405.
(10)Li, H.; Brédas, J.-L.* Developing Molecular-Level Models for Organic Field-Effect Transistors. Natl. Sci. Rev. 2021, 8 (4), nwaa167.
(11)Li, H.; Sini, G.; Sit, J.; Moulé, A. J.; Bredas, J.-L.* Understanding Charge Transport in Donor/Acceptor Blends from Large-Scale Device Simulations Based on Experimental Film Morphologies. Energy Environ. Sci. 2020, 13 (2), 601–615.
(12)Li, H.; Evans, A. M.; Castano, I.; Strauss, M. J.; Dichtel, W. R.; Bredas, J.-L.* Nucleation–Elongation Dynamics of Two-Dimensional Covalent Organic Frameworks. J. Am. Chem. Soc. 2020, 142 (3), 1367–1374.
(13)Li, H.; Brédas, J.-L.* Nanoscrolls Formed from Two-Dimensional Covalent Organic Frameworks. Chem. Mater. 2019, 31 (9), 3265–3273.
(14)Li, H.; Brédas, J.-L.* Large Out-of-Plane Deformations of Two-Dimensional Covalent Organic Framework (COF) Sheets. J. Phys. Chem. Lett. 2018, 9 (15), 4215–4220.
(15)Li, H.; Bredas, J.* Modeling of Actual‐Size Organic Electronic Devices from Efficient Molecular‐Scale Simulations. Adv. Funct. Mater. 2018, 28 (29), 1801460.
(16)Li, H.; Tessler, N.; Brédas, J.-L.* Assessment of the Factors Influencing Charge-Carrier Mobility Measurements in Organic Field-Effect Transistors. Adv. Funct. Mater. 2018, 28 (39), 1803096.
(17)Li, H.; Brédas, J.-L.* Quasi-One-Dimensional Charge Transport Can Lead to Nonlinear Current Characteristics in Organic Field-Effect Transistors. J. Phys. Chem. Lett. 2018, 9 (22), 6550–6555.
(18)Li, H.; Brédas, J.-L.* Kinetic Monte Carlo Modeling of Charge Carriers in Organic Electronic Devices: Suppression of the Self-Interaction Error. J. Phys. Chem. Lett. 2017, 8 (11), 2507–2512.
(19)Li, H.; Li, Y.; Li, H.; Brédas, J.-L.* Organic Field‐Effect Transistors: A 3D Kinetic Monte Carlo Simulation of the Current Characteristics in Micrometer‐Sized Devices. Adv. Funct. Mater. 2017, 27 (9), 1605715.
(20)Li, H.; Chavez, A. D.; Li, H.; Li, H.; Dichtel, W. R.*; Bredas, J.-L.* Nucleation and Growth of Covalent Organic Frameworks from Solution: The Example of COF-5. J. Am. Chem. Soc. 2017, 139 (45), 16310–16318.