上海大学微电子学院教师——李浩源

创建时间:  2021/01/09  康蕊   浏览次数:   

李浩源 教授/博导

邮箱:lihaoyuan@shu.edu.cn

上海大学微电子学院



个人介绍

主要从事材料多尺度模拟工作,探索机器学习方法在材料研究中的应用,进行计算软件开发。在Journal of the American Chemical Society、Angewandte Chemie International EditionEnergy & Environmental Science、National Science Review、Chemical ScienceAdvanced Functional Materials、ACS Materials Letters等期刊上发表论文40余篇,研究成果被Advanced Science News等新闻媒体选为亮点工作报导。入选上海市海外高层次人才计划、上海市青年科技“启明星”计划、上海大学伟长学者、Chemical Science 2025年度Leading InvestigatorJournal of Materials Chemistry C 2022年度Emerging Investigator。担任Nature CommunicationsJournal of the American Chemical SocietyAngewandte Chemie International EditionAdvanced Materials等期刊的审稿人。

ORCIDhttps://orcid.org/0000-0002-2469-5842

谷歌学术:https://scholar.google.com/citations?user=x_z7k4QAAAAJ

主要研究手段材料和工艺仿真、机器学习和AI Agent、机器人自动化材料制备

主要研究对象光刻胶、二维聚合物、有机半导体器件

学术兼职Moore and More青年编委、中国化学会电子信息化学品专业委员会委员、中国机械工程学会半导体装备分会委员会委员


长期招收下列人员

1. 硕士研究生/直博(化学、材料、物理、光学计算机、软件工程、机械工程等背景)

2. 博士研究生具有机器学习、材料模拟等研究经验

3. 博士后

4. 科研助理


教育背景

2015年博士毕业于清华大学

2010年本科毕业于吉林大学


工作经历

2020年11月–至今 上海大学 特聘教授

2020年1月–2020年10月 亚利桑那大学 研究科学家

2019年6月–2020年1月 佐治亚理工学院 研究科学家

2017年2月–2019年5月 佐治亚理工学院 博士后

2015年8月–2016年12月 阿卜杜拉国王科技大学 博士后


开发的仿真软件

MlCOFSyn:二维共价有机框架材料结晶仿真软件(https://doi.org/10.1021/acs.jcim.5c00446)

有机微电子材料工艺仿真软件

有机微电子和光电子器件分子水平仿真软件


毕业生去向

华为(2024年3名2025年2名

宇量昇(2024年1名)

中芯国际(2024年1名

香港科技大学(2024年1名


代表性论文

(1)Zhang, H.; Lin, N.; Evans, A.; Wang, T.; Pratic, S.; Bredas, J.-L., Li, H.* Hierarchical incremental learning deciphers molecular arrangements in multi-component materials. Nat. Commun., 2025, accepted in principle.

(2)Xiong, L.; Fu, C.; Tian, J.; Geng, Y.; Han, L.; Zhang, H.; Li, H.* Intrinsic Mechanical Properties of Two-Dimensional Covalent Organic Frameworks. Chem. Sci. 2025. DOI: 10.1039/D5SC02180D.

(3)Shi, Y.; Tian, J.; Li, H.* MlCOFSyn: A Machine Learning Framework To Facilitate the Synthesis of 2D Covalent Organic Frameworks. J. Chem. Inf. Model. 2025, 65(12), 6027–6037.

(4)Jiang, Y.; Zhang, H.*; Li, H.* Mechanisms of Li-Ion Transport in Two-Dimensional Covalent Organic Framework-Polyethylene Glycol Composite Electrolytes. Chem. Mater. 2025, 37(12), 4363–4374.

(5)Wang, Z.; Du, H.; Xin, H.; Xue, J.; Zhang, J.; Li, H.* Microscopic Mechanisms of Reaction-Coupled Acid Diffusion in Chemically Amplified Photoresists. Chem. Mater. 2024, 36 (21), 10841–10849.

(6)Wang, Z.; Du, H.; Evans, A. M.*; Ni, X.; Bredas, J.-L.*; Li, H.* Growth of Two-Dimensional Covalent Organic Frameworks on Substrates: Insight from Microsecond Atomistic Simulations. Chem. Sci. 2024, 15 (42), 17629–17641.

(7)Tian, J.; Treaster, K. A.; Xiong, L.; Wang, Z.; Evans, A. M.*; Li, H.* Taming Two-Dimensional Polymerization by a Machine-Learning Discovered Crystallization Model. Angew. Chem. Int. Ed. 2024, 63 (39), e202408937.

(8)Du, K.; Xiong, L.; Fu, C.; Ni, X.*; Bredas, J.-L.*; Li, H.* Impact of Structural Defects on the Electronic Properties of Two-Dimensional Covalent Organic Frameworks. ACS Mater. Lett. 2024, 6 (2), 335–344.

(9)Pelkowski, C. E.; Natraj, A.; Malliakas, C. D.; Burke, D. W.; Bardot, M. I.; Wang, Z.; Li, H.*; Dichtel, W. R.* Tuning Crystallinity and Stacking of Two-Dimensional Covalent Organic Frameworks through Side-Chain Interactions. J. Am. Chem. Soc. 2023, 145 (40), 21798–21806.

(10)Zhang, H.; Geng, Y.; Huang, J.; Wang, Z.; Du, K.; Li, H.* Charge and Mass Transport Mechanisms in Two-Dimensional Covalent Organic Frameworks (2D COFs) for Electrochemical Energy Storage Devices. Energy Environ. Sci. 2023, 16 (3), 889–951.

(11)Zhang, H.; Li, H.* Lithium-Ion Distribution and Motion in Two-Dimensional Covalent Organic Frameworks: The Example of TAPB-PDA COF. J. Mater. Chem. C 2022, 10 (37), 13834–13843.

(12)Li, H.; Bredas, J.-L.* Impact of Structural Defects on the Elastic Properties of Two-Dimensional Covalent Organic Frameworks (2D COFs) under Tensile Stress. Chem. Mater. 2021, 33 (12), 4529–4540.

(13)Li, H.; Evans, A. M.; Dichtel, W. R.; Bredas, J.-L.* Quantitative Description of the Lateral Growth of Two-Dimensional Covalent Organic Frameworks Reveals Self-Templation Effects. ACS Mater. Lett. 2021, 3 (4), 398–405.

(14)Li, H.; Bredas, J.-L.* Developing Molecular-Level Models for Organic Field-Effect Transistors. Natl. Sci. Rev. 2021, 8 (4), nwaa167.

(15)Li, H.; Sini, G.; Sit, J.; Moulé, A. J.; Bredas, J.-L.* Understanding Charge Transport in Donor/Acceptor Blends from Large-Scale Device Simulations Based on Experimental Film Morphologies. Energy Environ. Sci. 2020, 13 (2), 601–615.

(16)Li, H.; Evans, A. M.; Castano, I.; Strauss, M. J.; Dichtel, W. R.*; Bredas, J.-L.* Nucleation–Elongation Dynamics of Two-Dimensional Covalent Organic Frameworks. J. Am. Chem. Soc. 2020, 142 (3), 1367–1374.

(17)Li, H.; Bredas, J.-L.* Nanoscrolls Formed from Two-Dimensional Covalent Organic Frameworks. Chem. Mater. 2019, 31 (9), 3265–3273.

(18)Li, H.; Bredas, J.-L.* Large Out-of-Plane Deformations of Two-Dimensional Covalent Organic Framework (COF) Sheets. J. Phys. Chem. Lett. 2018, 9 (15), 4215–4220.

(19)Li, H.; Bredas, J.-L.* Modeling of ActualSize Organic Electronic Devices from Efficient MolecularScale Simulations. Adv. Funct. Mater. 2018, 28 (29), 1801460.

(20)Li, H.; Tessler, N.; Bredas, J.-L.* Assessment of the Factors Influencing Charge-Carrier Mobility Measurements in Organic Field-Effect Transistors. Adv. Funct. Mater. 2018, 28 (39), 1803096.

(21)Li, H.; Bredas, J.-L.* Quasi-One-Dimensional Charge Transport Can Lead to Nonlinear Current Characteristics in Organic Field-Effect Transistors. J. Phys. Chem. Lett. 2018, 9 (22), 6550–6555.

(22)Li, H.; Bredas, J.-L.* Kinetic Monte Carlo Modeling of Charge Carriers in Organic Electronic Devices: Suppression of the Self-Interaction Error. J. Phys. Chem. Lett. 2017, 8 (11), 2507–2512.

(23)Li, H.; Li, Y.; Li, H.; Bredas, J.-L.* Organic FieldEffect Transistors: A 3D Kinetic Monte Carlo Simulation of the Current Characteristics in MicrometerSized Devices. Adv. Funct. Mater. 2017, 27 (9), 1605715.

(24)Li, H.; Chavez, A. D.; Li, H.; Li, H.; Dichtel, W. R.*; Bredas, J.-L.* Nucleation and Growth of Covalent Organic Frameworks from Solution: The Example of COF-5. J. Am. Chem. Soc. 2017, 139 (45), 16310–16318.


上一条:上海大学微电子学院教师——尹聪

下一条:上海大学微电子学院教师——胡挺